ramy  2019-06-12 13:49:56  智能硬件 |   查看评论   

让电脑加速100倍!这家英国创业团队的芯片新思路

▲英国人工智能芯片硬件设计初创公司Graphcore推出的IPU加速卡

 

【6月12日消息】与其他数字处理软件不同的是,英国人工智能(AI)芯片硬件设计初创公司Graphcore专为电脑开发“大脑”,而且这种大脑更擅长猜测。

 

作为Graphcore首席技术官,西蒙·诺尔斯(Simon Knowles)面带微笑地在白板上勾画着自己对机器学习未来的愿景。他用黑色记号笔在人类大脑的“节点”上打点并绘制图表,这些节点通常负责大脑中“沉思或思考的部分”。他的初创公司正试图在下一代计算机处理器中模拟这些神经元和突触,该公司押注下一代计算机处理器能够帮助“智能机械化”。

 

AI通常被认为是挖掘大量数据集的复杂软件,但诺尔斯及其联合创始人、Graphcore首席执行官奈杰尔·图恩(Nigel Toon)认为,运行该软件的电脑仍然存在更大的障碍。坐在位于英国港口城市布里斯托尔通风良好的办公室里,诺尔斯和图恩表示,问题在于芯片本身(基于它们的功能,可分为中央处理单元CPU或图形处理单元GPU),它们并没有以任何可识别的类人方式进行“思考”。

 

人类的大脑利用直觉来简化某些问题,比如识别一个正在接近的朋友,而计算机可能会尝试分析那个人脸部的每个像素,并将其与包含数十亿张图像的数据库进行比较,然后才会试图打招呼。当计算机主要充当计算器时,这种精确度是有意义的,但对AI来说,它的效率却非常低下,需要消耗大量能量来处理所有相关数据。

 

2016年,诺尔斯和更有商业头脑的图恩创建了Graphcore,他们把“不那么精确”的计算作为芯片的核心,称之为智能处理单元(IPU)。诺尔斯表示:“你大脑中的概念相当模糊。它实际上是非常近似的数据点的集合,使你可以产生精确的想法。”诺尔斯的英语口音和经常发出咯咯的笑声,让人把他比作《哈利·波特》中霍格沃茨学院的院长。

 

关于人类智慧为何会以这种方式形成,有各种各样的理论。但对于机器学习系统来说,它们需要处理庞大且不规则无组织的信息结构(即图形),为此建立专门用于连接类似大脑节点数据点的芯片,可能是AI继续演变的关键。诺尔斯说:“我们想建造一台高性能的计算机,它可以非常不精确的方式处理数字。”

 

换句话说,Graphcore正在为电脑开发“大脑”,如果其联合创始人的想法是对的,它将能够更像人类那样处理信息,而不是通过大规模的数字运算来伪造信息。图恩解释称:“几十年来,我们始终在步步为营地告诉机器该做什么,但现在我们不再这样做了。”他描述了Graphcore的芯片是如何教机器学习的:“这就像回到了20世纪70年代,那时微处理器刚刚问世,我们需要彻底改造英特尔。”

 

投资者赫尔曼·豪泽(Hermann Hauser)是Arm Holdings Plc的联合创始人,该公司控制着应用最广泛的芯片设计工作。豪泽押注诺尔斯和图恩的IPU将掀起下一波计算浪潮,他说:“这在计算机历史上只发生过三次,分别是20世纪70年代的CPU、20世纪90年代的GPU,Graphcore的IPU则是第三次。”

让电脑加速100倍!这家英国创业团队的芯片新思路

▲Graphcore办公室的IPU服务器机架

 

Graphcore起源于豪泽于2011年和2012年在剑桥大学皇家学会组织的一系列研讨会,皇家学会是艾萨克·牛顿(Isaac Newton)和查尔斯·达尔文(Charles Darwin)的校友组成的科学团体。在国王学院的豪华餐厅里,AI专家、神经学家、统计学家和动物学家围绕着先进计算技术对社会的影响展开了辩论。

 

豪泽认为,诺尔斯“有个地球般大小的大脑”,他在这个“象牙塔”里感到不自在,尽管他从剑桥大学开始的职业生涯。20世纪80年代毕业后,诺尔斯在英国政府的一个研究实验室学习早期的神经网络。之后,他与人合作创办了无线处理器初创企业Element 14,并于2000年以6.4亿美元的价格将其卖给了博通公司(Broadcom)。

 

不久之后,诺尔斯和有半导体创业经验的图恩第一次合作。2002年,他们创建了移动芯片制造商Icera,并在不到10年后以4.36亿美元的价格卖给了英伟达公司(Nvidia)。当时两人还没有准备好退休,图恩说:“我们都不擅长打高尔夫球。”诺尔斯去参加剑桥大学的系列讲座时,他们正在讨论其他的想法。诺尔斯回忆说:“我是房间里那个邋遢的家伙,戴着一顶烟囱帽,只想做些东西。你知道:‘别管热力学了,我想做个蒸汽机!’”

 

当剑桥大学信息工程学教授史蒂夫·杨(Steve Young)做了一个关于计算对话系统极限的演讲,诺尔斯不断地向他提出有关能源效率的问题。史蒂夫·杨后来向苹果公司出售了语音处理服务,该服务现在用于Siri。诺尔斯表示:“我问他在算法中使用的数字精度,这在史蒂夫看来有些离题了。”但他强调,在硅材料中,“数字的精度作为能量的决定因素非常关键”。

 

几天后,史蒂夫·杨给诺尔斯发了一封电子邮件,说他的学生调查了这件事,发现他们每次计算都使用了64位数据。他们意识到,他们可以像诺尔斯所建议的那样,用8位数据执行同样的函数,只是运算不那么精确。当计算机有更少的数学任务要做时,它可以利用节省下来的能源来处理更多的数字。这有点像人类大脑从计算某家餐厅的GPS坐标转换到仅仅记住其名字和邻居。

 

诺尔斯说:“如果我们制造出一种更适合这种工作的处理器,我们可以将性能提高一千倍。”史蒂夫·杨和其他人对此印象深刻,诺尔斯和图恩决定他们必须创建Graphcore。早在2013年,他们就开始筹集资金来开发这个想法,并在2016年向世界展示了这家公司。

 

半导体行业目前正在讨论摩尔定律的可持续性问题。摩尔定律是上世纪60年代的一项观察发现,一块芯片上的晶体管数量将会每两年翻一番。Graphcore的领导者们关心的是个相关概念,叫做丹尼德量表(Dennard scale),它指出随着晶体管密度的提高,功率需求将保持不变。

  
 

除特别注明外,本站所有文章均为 人工智能学习网 原创,转载请注明出处来自让电脑加速100倍!这家英国创业团队的芯片新思路

留言与评论(共有 0 条评论)
   
验证码: